Стабилизаторы напряжения volt

Для обеспечения коммутации вентилей без бросков тока через обратные диоды (14(1). 17(n2)) и шунтирующие (24, 25) диоды, для уменьшения уровня перенапряжения на вентилях из-за индуктивности монтажа фильтрующих конденсаторных батарей постоянного напряжения (на фиг.1а: 5 и 6), а также для ограничения тока короткого замыкания при пробоях в схему фазы инвертора включены коммутирующие реакторы (фиг.1б: 26 между точками 28 и 29; 27 между точками 30 и 8; 31 между точками 8 и 32; 33 между точками 34 и 35), ограничивающие скорость изменения тока (di/dt) через вентили. Значение индуктивности коммутирующих реакторов выбирается из расчета ограничения di/dt на приемлемом уровне, исходя из требования не превышения максимально допустимого повторяющегося тока через полупроводниковые приборы. Для вывода энергии реактора после коммутации вентиля в схему включены коммутирующие диоды (на фиг.1б: 36 между точками 20 и 29; 37 между точками 21 и 27; 38 между точками 22 и 33; 39 между точками 23 и 34) и рекуперирующие преобразователи (на фиг.1б: 40 между точками 29 и 20, 41 между точками 21 и 22 и 42 между точками 23 и 35), осуществляющие возврат энергии коммутации обратно в конденсаторы постоянного напряжения 5 и 6 (за исключением стабилизаторы напряжения volt в самих преобразователях).

Структура преобразователя, основа выходного напряжения в котором формируется с помощью двухуровневого трехфазного мостового инвертора, представлена на фиг.2а Двухуровневый трехфазный мостовой инвертор 1 состоит из трех фаз (2, 3, 4) и конденсаторной батареи 43. К фазным выводам трехфазного инвертора (стабилизаторы напряжения volt 8, 9, 10) подключаются последовательно соединенные однофазные мостовые инверторы 12(1). Контактные шины комбинированного преобразователя (точки А, В, С) подключаются к электросети (без фильтрации или с фильтрацией - в зависимости от требований применения).

Для обеспечения коммутации вентилей 44, 45 (фиг.2б) фазы мостового инвертора 2, 3, 4 с вентилями, образованными последовательным соединением полностью управляемых полупроводниковых приборов (с обратными диодами и защитными цепями), в схему фазы инвертора включены конденсаторные батареи (на фиг.2а: 46 между точками 48 и 8; 47 между точками 8 и 49) для ограничения dU/dt на вентилях. Значение емкости конденсаторных батарей выбирается из расчета ограничения dU/dt на приемлемом уровне исходя из требования не превышения максимально допустимого рабочего напряжения на полупроводниковых приборах с учетом разброса их стабилизаторы напряжения volt включения/выключения.

Для обеспечения коммутации вентилей без бросков тока через обратные (44(1). 45(n3),) диоды, для уменьшения уровня перенапряжения на вентилях из-за индуктивности монтажа фильтрующей конденсаторной батареи постоянного напряжения (на фиг.2а: 43), а также для ограничения тока короткого замыкания при пробоях в схему фазы инвертора включены коммутирующие реакторы (на фиг.2б: 50 между точками 29 и 51; 53 между точками 52 и 35), ограничивающие скорость изменения тока (di/dt) через вентили. Значение индуктивности коммутирующих реакторов выбирается из расчета ограничения di/dt на приемлемом уровне, исходя из требования не превышения максимально допустимого повторяющегося тока через полупроводниковые приборы. Для вывода энергии реактора после коммутации вентиля в схему включены коммутирующие диоды (на фиг.2б: 54 между точками 48 и 51; 55 между точками 52 и 49) и рекуперирующие преобразователи (на фиг.2б: 56 между точками 29 и 48, 57 между точками 49 и 35), осуществляющие возврат энергии коммутации обратно в конденсаторную батарею постоянного напряжения 43 (за исключением потерь в самих преобразователях).

По стабилизаторы напряжения volt с [3], коммутирующие реакторы могут быть включены и в средней точке фазы (фиг.2в). Принцип работы предлагаемого преобразователя поясним на примере варианта его исполнения с трехфазным мостовым трехуровневым инвертором в качестве базового инвертора.

Система управления (фиг.3) с помощью блоков ШИМ-модулятора формирует в заданной последовательности импульсы управления вентилями всех инверторов. При этом осциллограмма инвертора трехуровневый трехфазный мостовой инвертор формирует между средней точкой 7 и фазными выводами трехфазного инвертора (точки 8, 9, 10) один из трех уровней напряжения (положительное, отрицательное и ноль) (U3 на фиг.5). Переключения вентилей осуществляются системой управления в соответствии с принятым алгоритмом. Система управления имеет несколько контуров регулирования, среди которых можно выделить два глобальных контура: - по амплитудному значению тока через реактор выходного фильтра (сигнал i на фиг.3); - по амплитудному значению напряжения с выхода (трансформатор напряжения на шинах подключения конденсаторов выходного фильтра) - (сигнал и на фиг.3).

Мотокультиватор хопер 900 цена

Помимо этого, для отработки быстрых процессов организованы локальные контуры регулирования по мгновенным значениям тока и напряжения с выходного фильтра, а также несколько локальных контуров регулирования по току и напряжению с конденсаторов постоянного напряжения базового инвертора и однофазных мостов каскадного инвертора. В целом система управления построена по принципу поддержания заданного значения (REFO на фиг.5) отслеживаемого ею выходного сигнала.

Базовый трехфазный мостовой инвертор формирует основу (U3 на фиг.5) выходного напряжения стабилизаторы напряжения volt с низкой частотой переключения (S1 3.

Разница между заданием и основой U3 формируется однофазными мостовыми инверторами посредством широтно-импульсной модуляции (ШИМ). Управление каждым из однофазных мостовых инверторов ((S1 0. S4 2 a, b, c) на фиг.3) осуществляется с фазовым сдвигом относительно друг друга, за счет чего увеличивается результирующая частота пульсаций выходного напряжения.

В схему включены рекуперирующие преобразователи, осуществляющие возврат энергии коммутации в конденсаторную батарею постоянного напряжения 5, 6 (за исключением потерь в самих преобразователях). Работу одного из возможных вариантов рекуперирующего преобразователя поясняет фиг.1в. При выключении управления вентиля (например 14) энергия коммутирующего реактора (например 26) через коммутирующие диоды (например 36) заряжает конденсатор 58.

В среднем постоянное напряжение конденсатора 58 преобразуется инвертором 59 в переменное напряжение повышенной частоты.

Трансформатор 60 повышает его до уровня напряжения на конденсаторной батарее 5, 6 звена постоянного тока и далее после выпрямления выпрямителем 61 напряжение подается на конденсаторную батарею.

Таким образом реактивная энергия коммутации из реактора возвращается в накопительную конденсаторную батарею. В общем случае при регулировании трехфазного трехуровневого инвертора (включая возможность нескольких переключений одного и того же вентиля за полупериод) в зависимости от знака формируемых на выходе напряжений возможны следующие виды коммутации: U0, i0 (где U - напряжение фазы инвертора, i - ток фазы инвертора): от транзисторов вентиля 14 к диодам 24 и обратно при включенных транзисторах 15; U0, i0: от транзисторов вентиля 17 к диодам 25 и обратно при включенных транзисторах 16 (коммутационные процессы протекают аналогично предыдущему пункту в силу симметрии схемы); U0, i0: от обратных диодов вентилей 14 и 15 к транзисторам 16 и диодам 25 и обратно.

U0, i0: от обратных диодов вентилей 16 и 17 к транзисторам 15 и диодам 24 и обратно(при коммутации процессы протекают аналогично предыдущему пункту в силу симметрии схемы); Таким образом из представленных восьми типов коммутации (включая обратные коммутации) принципиально можно выделить четыре типа: 1) от наружного (верхнего) управляемого вентиля к шунтирующему диоду того же плеча инвертора; 2) наоборот, от шунтирующего диода к управляемому вентилю; 3) от обратных диодов вентилей одного плеча к внутреннему управляемому вентилю и шунтирующему диоду другого плеча той же фазы; 4) наоборот, от управляемого вентиля и шунтирующего диода к обратным диодам. Рассмотрим процессы, протекающие при различных типах коммутации при стабилизаторы напряжения volt в схеме коммутирующих цепей, 1) Коммутация первого типа, например, при коммутации тока от управляемого вентиля 14 к шунтирующему диоду сварочные аппараты автоген 24 осуществляется в два этапа.

В предкоммутационном состоянии ток проводят коммутирующий реактор 26, управляемые вентили 14, 15, реактор 27. Конденсатор 18 разряжен, а конденсатор 19 заряжен до уровня напряжения в звене постоянного тока Ud - напряжения между шинами постоянного тока 29 и 35 (с точностью до напряжений в блоках рекуперации энергии).

Коммутация начинается запиранием управляемого вентиля 14.

Отпираются коммутирующие диоды 36 и 37 и происходит плавный перезаряд конденсаторов 18 и 19, при этом конденсатор 18 заряжается по цепи 26-36-18-37-27- (другая фаза)-(звено демпфирующие цепи в инверторе постоянного тока 6-5)-26, а конденсатор 19 перезаряжается по цепи 42-19-40-37-27-(другая фаза)-(звено постоянного тока 5-6)-42. По окончании первого этапа коммутации конденсаторы 18 и 19 перезаряжаются до одинакового уровня напряжения, равного половине от Ud (с точностью до напряжений 40. На втором этапе коммутации ток через шунтирующий диод плавно нарастает, а ток через реактор 26 и диод 36 плавно спадает, вызывая дальнейший перезаряд конденсаторов 18 и 19 (на величину, соответствующую напряжениям на 40.

При достижении током через реактор 26 и диоды 36 нулевого значения, диоды 36 запираются, а процесс коммутации заканчивается.

2) Коммутация второго типа, например, при коммутации тока от шунтирующего диода 24 к управляемому вентилю 14 осуществляется в три этапа.

В предкоммутационном состоянии ток проводят шунтирующие диоды 24, управляемый вентиль 15, реактор 27.

Карта