Трансформатор напряжения ток

Значение индуктивности коммутирующих реакторов выбирается из расчета ограничения di/dt на приемлемом уровне, исходя из требования не превышения максимально допустимого повторяющегося тока через полупроводниковые приборы. Для вывода энергии реактора после коммутации вентиля в схему включены коммутирующие диоды (на фиг.1б: 36 между точками 20 и 29; 37 между точками 21 и 27; 38 между точками 22 и 33; 39 между точками 23 и 34) и рекуперирующие преобразователи (на фиг.1б: 40 между точками 29 и 20, 41 между точками 21 и 22 и 42 между точками 23 и 35), осуществляющие возврат энергии коммутации обратно в конденсаторы постоянного напряжения 5 и 6 (за исключением потерь в самих преобразователях). Структура преобразователя, основа выходного напряжения в котором формируется с помощью двухуровневого трехфазного мостового инвертора, представлена на фиг.2а Двухуровневый трехфазный мостовой инвертор 1 состоит из трех фаз (2, 3, 4) и конденсаторной батареи 43. К фазным выводам трехфазного инвертора (точки 8, 9, 10) подключаются последовательно соединенные однофазные мостовые инверторы 12(1).

Контактные шины комбинированного преобразователя (точки А, В, С) подключаются к электросети (без фильтрации или с фильтрацией - в зависимости от требований применения). Для обеспечения коммутации вентилей 44, 45 (фиг.2б) фазы мостового инвертора 2, 3, 4 с вентилями, образованными последовательным соединением полностью управляемых полупроводниковых приборов (с обратными диодами и защитными цепями), в схему фазы трансформатор напряжения ток включены конденсаторные батареи (на фиг.2а: 46 между точками 48 и 8; 47 между точками 8 и 49) для ограничения dU/dt на вентилях. Значение емкости конденсаторных батарей выбирается из расчета ограничения dU/dt на приемлемом уровне исходя из требования не превышения максимально допустимого рабочего напряжения на полупроводниковых приборах с учетом разброса их времени включения/выключения.

Для обеспечения коммутации вентилей без бросков тока через обратные (44(1).

45(n3),) диоды, для уменьшения уровня перенапряжения на трансформатор напряжения ток из-за индуктивности монтажа фильтрующей конденсаторной батареи постоянного напряжения (на фиг.2а: 43), а также для ограничения тока короткого замыкания при пробоях в схему фазы инвертора включены коммутирующие реакторы (на фиг.2б: 50 между точками 29 и 51; 53 между точками 52 и 35), ограничивающие скорость изменения тока (di/dt) через вентили.

Значение индуктивности коммутирующих реакторов выбирается из расчета ограничения di/dt на приемлемом уровне, исходя из требования не превышения максимально допустимого повторяющегося тока через полупроводниковые приборы. Для вывода энергии реактора после коммутации вентиля в схему включены коммутирующие диоды (на фиг.2б: 54 между точками 48 и 51; 55 между точками 52 и 49) и рекуперирующие преобразователи (на фиг.2б: 56 между точками 29 и 48, 57 между точками 49 и 35), осуществляющие возврат энергии коммутации обратно в конденсаторную батарею постоянного напряжения 43 (за исключением потерь в самих преобразователях).

По аналогии с [3], коммутирующие реакторы могут быть включены и в средней точке фазы (фиг.2в). Принцип работы предлагаемого преобразователя поясним на примере варианта его исполнения с трехфазным мостовым трехуровневым инвертором в качестве базового инвертора. Система управления (фиг.3) с помощью блоков ШИМ-модулятора формирует в заданной последовательности импульсы управления вентилями всех инверторов.

При этом трехуровневый трехфазный мостовой инвертор формирует между средней точкой 7 и фазными выводами трехфазного инвертора (точки 8, 9, 10) один из трех уровней напряжения (положительное, отрицательное и ноль) (U3 на фиг.5).

Переключения вентилей осуществляются системой управления в соответствии с принятым алгоритмом. Система управления имеет несколько контуров регулирования, среди которых можно выделить два глобальных контура: - по амплитудному значению тока через реактор выходного фильтра (сигнал i на фиг.3); - по амплитудному значению напряжения с выхода (трансформатор напряжения на шинах подключения конденсаторов выходного фильтра) - (сигнал и на фиг.3).

Помимо этого, для отработки быстрых процессов организованы локальные контуры регулирования по мгновенным значениям тока и напряжения с выходного фильтра, а также несколько локальных контуров регулирования по току и напряжению с конденсаторов постоянного напряжения базового инвертора и однофазных мостов каскадного инвертора.

В целом система управления построена по принципу поддержания заданного значения (REFO на фиг.5) отслеживаемого ею выходного сигнала. Базовый трехфазный мостовой инвертор формирует основу (U3 на фиг.5) выходного напряжения преобразователя с низкой частотой переключения (S1 3. Разница между заданием и основой U3 формируется трансформатор напряжения ток мостовыми инверторами посредством широтно-импульсной модуляции (ШИМ).

Сварочные аппараты hyundai

Управление каждым из однофазных мостовых инверторов ((S1 0. S4 2 a, b, c) на фиг.3) осуществляется с фазовым сдвигом относительно друг трансформатор напряжения ток, за счет чего увеличивается результирующая частота пульсаций выходного напряжения.

В схему включены рекуперирующие преобразователи, осуществляющие возврат энергии коммутации в протон сварочный инвертор конденсаторную батарею постоянного напряжения 5, 6 (за исключением потерь в самих преобразователях). Работу одного из возможных вариантов рекуперирующего преобразователя поясняет фиг.1в.

При выключении управления вентиля (например 14) энергия коммутирующего реактора (например 26) через коммутирующие диоды (например 36) заряжает конденсатор 58. В среднем постоянное напряжение конденсатора 58 преобразуется инвертором 59 в переменное напряжение повышенной частоты. Трансформатор 60 повышает его до уровня напряжения на конденсаторной батарее 5, 6 звена постоянного тока и далее после выпрямления выпрямителем 61 напряжение подается на конденсаторную батарею.

Таким образом реактивная энергия коммутации из реактора возвращается в накопительную конденсаторную батарею. В общем случае при регулировании мазель преобразователи напряжения трехфазного трехуровневого инвертора (включая возможность нескольких переключений одного и того же вентиля за полупериод) в зависимости от знака формируемых на выходе напряжений возможны следующие виды коммутации: U0, i0 (где U - напряжение фазы инвертора, i - ток фазы инвертора): от транзисторов вентиля 14 к диодам 24 и обратно при включенных транзисторах 15; U0, i0: от транзисторов вентиля 17 к диодам 25 и обратно при включенных транзисторах 16 (коммутационные процессы протекают аналогично предыдущему пункту в силу симметрии схемы); U0, i0: от обратных диодов вентилей 14 и 15 к транзисторам 16 и диодам 25 и обратно.

U0, i0: от обратных диодов вентилей 16 и 17 к транзисторам 15 и диодам 24 и обратно(при коммутации процессы протекают аналогично предыдущему пункту в силу симметрии схемы); Таким образом из представленных восьми типов коммутации (включая обратные коммутации) принципиально можно выделить четыре типа: 1) от наружного (верхнего) управляемого вентиля к шунтирующему диоду того же плеча инвертора; 2) наоборот, от шунтирующего диода к управляемому вентилю; 3) от обратных трансформатор напряжения ток вентилей одного плеча к внутреннему управляемому вентилю и шунтирующему трансформатор напряжения ток другого плеча той же фазы; 4) наоборот, от управляемого вентиля и шунтирующего диода к обратным диодам. Рассмотрим процессы, протекающие при различных типах коммутации при наличии в схеме коммутирующих цепей, инвертора 220в 1) Коммутация первого типа, например, при коммутации тока от управляемого вентиля 14 к шунтирующему диоду 24 осуществляется в два этапа. В предкоммутационном состоянии ток проводят коммутирующий реактор 26, управляемые вентили 14, 15, реактор 27. Конденсатор 18 разряжен, а конденсатор 19 заряжен до уровня напряжения в звене постоянного тока Ud - напряжения между шинами постоянного тока 29 и 35 (с ток трансформатор напряжения до напряжений в блоках рекуперации энергии).

Коммутация начинается запиранием управляемого вентиля 14. Отпираются коммутирующие диоды 36 и 37 и происходит плавный перезаряд конденсаторов 18 и 19, при этом конденсатор 18 заряжается по цепи 26-36-18-37-27- (другая фаза)-(звено постоянного тока 6-5)-26, а конденсатор 19 перезаряжается по цепи 42-19-40-37-27-(другая фаза)-(звено постоянного тока 5-6)-42. По окончании первого этапа коммутации конденсаторы 18 и 19 перезаряжаются до одинакового уровня напряжения, равного половине от Ud (с точностью до напряжений 40. На втором этапе коммутации ток через шунтирующий диод плавно нарастает, а ток через реактор 26 и диод 36 плавно спадает, вызывая дальнейший перезаряд конденсаторов 18 и 19 (на величину, соответствующую напряжениям на 40.

При достижении током через реактор 26 и диоды 36 нулевого значения, диоды 36 запираются, а процесс коммутации заканчивается. 2) Коммутация второго трансформатор напряжения ток, например, при коммутации тока от шунтирующего диода 24 к управляемому вентилю 14 осуществляется в три этапа. В предкоммутационном состоянии ток проводят шунтирующие диоды 24, управляемый вентиль 15, реактор 27. Конденсаторы 18 и 19 заряжены до одинакового уровня напряжения (с точностью до напряжений в блоках рекуперации энергии 40.

Коммутация начинается отпиранием управляемого вентиля 14. Ток через шунтирующие диоды 24 плавно спадает, а через 14 нарастает со скоростью, ограниченной индуктивностью коммутирующих реакторов 26 и 27. Первый этап коммутации заканчивается, когда ток через диоды 24 спадает до нуля. На втором этапе коммутации происходит перезаряд конденсаторных батарей 18 и 19 (18 разряжается до нуля по контуру цепи 18-40-26-14-15-27-31-38-41-18, а 19 заряжается до полного напряжения в звене постоянного тока по контуру 19-42-(звено постоянного тока 6-5)-26-14-15-27-31-38-19).

Второй этап заканчивается, когда напряжение на 18 становится равным нулю. На третьем этапе открываются коммутирующие диоды 36, 37 и «лишний» ток, возникающий в 26, 27, 31 из-за перезаряда 18, 19, спадает до номинального значения через блоки рекуперации 40 и 41 соответственно, после чего коммутирующие диоды запираются и коммутация заканчивается.

3) Рассмотрим процессы при коммутации третьего типа, например от обратных диодов вентилей 14, 15 к управляемому вентилю 16 и шунтирующему диоду 25.

Коммутация третьего типа осуществляется в два этапа. В предкоммутационном состоянии ток проводят реактор 27, обратные диоды вентилей 14, 15, реактор 26.

Конденсаторная батарея 18 разряжена до нуля, а 19 заряжена до полного напряжения Ud (с точностью до напряжений в блоках рекуперации энергии 40.

Карта